Bacteriophage Mediates Efficient Gene Transfer in Combination with Conventional Transfection Reagents

نویسندگان

  • Amanda Donnelly
  • Teerapong Yata
  • Kaoutar Bentayebi
  • Keittisak Suwan
  • Amin Hajitou
  • Abram Aertsen
چکیده

The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i) provides enhanced phage-mediated gene transfer; (ii) is applicable for laboratory transfection processes and (iii) shows promise within industry for large-scale gene transfer applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinational use of lipid-based reagents for efficient transfection of primary fibroblasts and hepatoblasts.

Commercially available lipid-based transfection reagents are widely used to deliver DNA to cells. However, these lipid-based transfection reagents show poor gene transfer efficiency in primary cells. Here, we demonstrate a simple method to improve gene transfer efficiency in primary fibroblasts and hepatoblasts using a combination of lipid-based transfection reagents. Our data show that combine...

متن کامل

انتقال ژن به سلول‌های بنیادی مزانشیمال موشی: بررسی مقایسه‌ای دو روش ویروسی و غیر ویروسی

    Background and Aims : Mesenchymal stem cells (MSCs) are attractive targets for cell and gene therapy, because they can differentiate into many cell lineages. Hence, finding an efficient and suitable method for transferring of genetic materials to these cells is very essential. In this study, we evaluated the efficiency of two methods of gene transferring, viral and nonviral, in transfection...

متن کامل

Cell-specific targeting by engineered M13 bacteriophage expressing VEGFR2 nanobody

Objective(s): Filamentous bacteriophage M13 was genetically engineered to specifically target mammalian cells for gene delivery purpose. Materials and Methods: A vascular endothelial growth factor receptor 2 (VEGFR2)-specific nanobody was genetically fused to the capsid gene III of M13 bacteriophage (pHEN4/3VGR19). A mammalian expression construct containing Cop-green fluorescent protein (Cop-G...

متن کامل

Single-Cell-State Culture of Human Pluripotent Stem Cells Increases Transfection Efficiency

Efficient gene transfer into human pluripotent stem cells (hPSCs) holds great promise for regenerative medicine and pharmaceutical development. In the past decade, various methods were developed for gene transfer into hPSCs; however, hPSCs form tightly packed colonies, making gene transfer difficult. In this study, we established a stable culture method of hPSCs at a single-cell state to reduce...

متن کامل

Preparation, characterization and transfection efficiency of nanoparticles composed of alkane-modified polyallylamine

Objective(s): Although viral vectors are considered efficient gene transfer agents, their board application has been limited by toxicity, immunogenicity, mutagenicity and small gene carrying capacity. Non-viral vectors are safe but they suffer from low transfection efficiency. In the present study, polyallylamine (PAA) in two molecular weights (15 and 65 kDa) was modified by alkane derivatives ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015